Мировая история

История изобретения транзистора

Одним из значительных изобретений XX века по праву считается изобретение транзистора, пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы – транзисторы, лишенные всех упомянутых недостатков.

Рождение твердотельной электроники можно отнести к 1833 году. Именно тогда Майкл Фарадей, экспериментируя с сульфидом серебра, обнаружил, что проводимость данного вещества (а это был, как мы теперь называем, полупроводник) растет с повышением температуры, в противоположность проводимости металлов, которая в данном случае уменьшается. Почему так происходит? С чем это связано? На эти вопросы Фарадей ответить не смог.
Тонкий металлический проводник, с помощью которого осуществлялся контакт с поверхностью кристалла, внешне очень напоминал кошачий ус.

Кристаллический детектор Пикарда так и стали называть —кошачий ус.

Чтобы вдохнуть жизнь в детектор Пикарда и заставить его устойчиво работать, требовалось найти наиболее чувствительную точку на поверхности кристалла. Сделать это было непросто. На свет появляется множество хитроумных конструкций кошачего уса облегчающих поиск заветной точки, но стремительный выход на авансцену радиотехники электронных ламп надолго отправляет детектор Пикарда за кулисы.

И все же кошачий ус намного проще и меньше вакуумных диодов, к тому же намного эффективнее на высоких частотах. А что если заменить вакуумный триод, на котором была основана вся радиоэлектроника того времени, на полупроводник? Возможно ли это? В начале ХХ века подобный вопрос не давал покоя многим ученым.

Советская Россия. 1918 год. По личному распоряжению Ленина в Нижнем Новгороде создается радиотехническая лаборатория. Новая власть остро нуждается в беспроволочной телеграфной связи. К работе в лаборатории привлекаются лучшие радиоинженеры того времени — М. А. Бонч-Бруевич, В. П. Вологдин, В. К. Лебединский, В. В. Татаринов и многие другие. Приезжает в Нижний Новгород и Олег Лосев.

После окончания Тверского реального училища в 1920 году и неудачного поступления в Московский институт связи Лосев согласен на любую работу, только бы приняли в лабораторию. Его берут посыльным. Общежития посыльным не полагается.

17-летний Лосев готов жить в помещении лаборатории, на лестничной площадке перед чердаком, только бы заниматься любимым делом.

С раннего возраста он страстно увлекался радиосвязью. В годы Первой мировой войны в Твери была построена радиоприемная станция. В ее задачи входило принимать сообщения от союзников России по Антанте и далее по телеграфу передавать их в Петроград. Лосев часто бывал на радиостанции, знал многих сотрудников, помогал им и не мыслил свою дальнейшую жизнь без радиотехники. В Нижнем Новгороде у него не было ни семьи, ни нормального быта, но было главное — возможность общаться со специалистами в области радиосвязи, перенимать их опыт и знания. После выполнения необходимых работ в лаборатории ему разрешали заниматься самостоятельным экспериментированием.

В то время интерес к кристаллическим детекторам практически отсутствовал. В лаборатории никто особо не занимался этой темой. Приоритет в исследованиях был отдан радиолампам. Лосеву очень хотелось работать самостоятельно. Перспектива получить ограниченный участок работы по лампам его никак не вдохновляет. Может быть, именно по этой причине он выбирает для своих исследований кристаллический детектор. Его цель — усовершенствовать детектор, сделать его более чувствительным и стабильным в работе. Приступая к экспериментам, Лосев ошибочно предполагал, что в связи с тем, что некоторые контакты между металлом и кристаллом не подчиняются закону Ома, то вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания.

В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно, должен обязательно присутствовать падающий участок. Любой грамотный специалист не стал бы ожидать усиления от детектора. Но вчерашний школьник ничего этого не знает. Он меняет кристаллы, материал иглы, аккуратно фиксирует получаемые результаты и в один прекрасный день обнаруживает искомые активные точки у кристаллов, которые обеспечивают генерацию высокочастотных сигналов.

Все с детства знают, что то-то и то-то невозможно, но всегда находится невежда, который этого не знает, он-то и делает открытие — шутил Эйнштейн.
Свои первые исследования генераторных кристаллов Лосев производил на простейшей схеме.

Испытав большое количество кристаллических детекторов, Лосев выяснил, что лучше всего генерируют колебания кристаллы цинкита, подвергнутые специальной обработке. Для получения качественных материалов он разрабатывает технологию приготовления цинкита методом сплавливания в электрической дуге естественных кристаллов. При паре цинкит — угольное острие, при подаче напряжения в10 В получался радиосигнал с длиной волны 68 м. При снижении генерации реализуется усилительный режим детектора.

Первыми изобретенными транзисторами, как ни странно, были полевые. Австро-венгерский физик Юлий Эдгар Лилиенфельд в 1928 году запатентовал принцип работы полевого транзистора, который основан на электростатическом эффекте поля. Полевые транзисторы намного опередили биполярные, может быть из-за более простого принципа их работы. Сам полевой транзистор был запатентован в 1934 году немецким физиком Оскаром Хейлом.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые – физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов – проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда – электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля. В изоляторах двигаться под действием электрического поля просто нечему.

Однако, в процессе исследования электрических явлений в различных материалах некоторым исследователям удавалось «нащупать» полупроводниковые эффекты. Например, первый кристаллический детектор (диод) создал в 1874 году немецкий физик Карл Фердинанд Браун на основе контакта свинца и пирита. (Пирит – железный колчедан, при ударе о кресало высекается искра, отчего и получил название от греческого «пир» — огонь). Позднее этот детектор с успехом заменил когерер в первых приемниках, что значительно повысило их чувствительность.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 — 1930 годы.

Большой вклад в изучение полупроводников внес советский ученый сотрудник знаменитой Нижегородской радиолаборатории О.В. Лосев. Он вошел в историю в первую очередь как изобретатель кристадина (генератор колебаний и усилитель на основе диода) и светодиода.

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn – перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).
Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Кроме того, запасы кремния в природе очень большие, а технология его очистки и обработки проще и дешевле, нежели редкого в природе элемента германия. Первый кремниевый транзистор появился вскоре после первого германиевого — в 1954 году. Это событие даже повлекло за собой новое название «кремниевый век», не надо путать с каменным!

Поначалу при производстве транзисторов лишь каждый пятый получался не бракованным, но технология быстро развивалась. Уже в 1953 году вышел первый транзисторный слуховой аппарат, который ознаменовал начало коммерческого применения нового радиоэлемента. Через год в продажу поступил транзисторный радиоприемник.

В 1956 году Джон Бардин, Уильям Шокли и Уолтер Брайтейн были удостоены нобелевской премии за свое открытие. В 1958 году, когда пара транзисторов была помещена на один кремниевый кристалл, в мире появилась первая интегральная схема. Сегодня на одном кристалле их помещается более миллиарда.

С изобретением транзистора маховик научно-технического прогресса был запущен с новой силой. В 1960 году Sony выпустила портативный телевизор. В 1971 появился карманный калькулятор. В 1983 году с изобретением мобильного телефона началась эра мобильной связи.

Микропроцессоры и полупроводники. Закат «кремниевого века»

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.

Графен – полупроводник будущего

В 2004 году учеными–физиками был открыт новый полупроводниковый материал графен. Этот основной претендент на замену кремнию также является материалом углеродной группы. На его основе создается транзистор, работающий в трех разных режимах.

По сравнению с существующими технологиями это позволит ровно в три раза сократить количество транзисторов в одном корпусе. Кроме того, по мнению ученых рабочие частоты нового полупроводникового материала могут достигать до 1000 ГГц. Параметры, конечно, очень заманчивые, но пока новый полупроводник находится на стадии разработки и изучения, а кремний до сих пор остается рабочей лошадкой. Его век еще не закончился.

Источник

Друзья , поддержите наш патриотический проект 

"Хронографъ"

Спасибо

Будем жить ...

Рекомендуем:

Красная Армия - Геополитическое обозрение

Хронографъ - Историко-Геополитическое обозрение

No Politics - Сайт Вне Политики

Russian [Time] - Геополитическое обозрение

Журнал Здоровье - О Здоровом образе Жизни

ПроАвто - Автомобильные новости

Армия и Флот - Военное обозрение

Click to comment

Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

To Top
Перейти к верхней панели